
JOURNAL OF COMPUTATIONAL PHYSICS 81, 230-235 (1989)

Note

Parallel Processing of Random Number Generation
for Monte Carlo Turbulence Simulation

1. INTRODUCTION

Certain stochastic processes in plasma physics can be simulated using random
numbers with a known distribution as initial conditions for the time integration of
dynamics. These integrations or realizations can usually be grouped into independ-
ent packets-thus rendering the problem ideally suited for multiprocessing com-
puters. However, once these packets of realizations (we refer to each packet as a
process) are sent to the individual processors, we must face a new problem-that
of generating independent strings of random numbers to be used as initial condi-
tions for the realizations in each process. We give a simple method for obtaining
independent strings of random numbers for use in such Monte Carlo calculations.
The method has the benefit of reproducing the identical string of numbers one
would obtain on a uniprocessing computer, given that it is known in advance how
the realizations are to be divided among the processes. The same procedure can be
applied if this is not known in advance, as long as one can provide an upper bound
on the number of random numbers required per process. In general, this upper limit
can be very large. We use 320 as an example, which is of order three billion.

2. THE PHYSICAL PROBLEM

In one application, we are interested in solutions to the following nonlinear
equation which has been used as a model for drift-wave turbulence,

d --& +v,+iw, 1
where Qk(t) is a complex-valued function representing the field quantity, (vk + iok)
is a linear growth, damping, or wave propagation term, and the right-hand side
gives nonlinear coupling between different Fourier modes. We simulate the random
flow field governed by Eq. (1) by integrating over an ensemble of Gaussian initial
conditions.

For a typical problem, we desire the results of ~4000 realizations. In one study
[11, these integrations were performed on a Cray-2 computer. The realizations

230
OG21-9991/89 $3.00
Copyright 0 1989 by Academic Press, Inc
All rights of reproduction in any form reserved.

RANDOM NUMBERGENERATION 231

were split into four groups (lOOO/processor). As each integration in the ensemble
finished, the results were tallied in a common block to be used in calculating
average quantities such as the time-lag correlation function and the response func-
tion. For this particular problem, we were integrating three distinct complex-valued
modes, and thus required six Gaussian numbers per realization. The Gaussian
numbers were generated by summing uniformly distributed numbers, usually 12 per
Gaussian. Therefore each processor required z 72,000 uniform random numbers. It
is important that the numbers given to each processor be disjoint sets, since
otherwise the realizations would be duplicates. Additionally, it would be useful if
the sets were reproducible from run to run. Finally, it would be nice if the generated
sets of numbers were the same as those one would obtain using the same random
number generator on computers with different numbers of processors (e.g., when
switching back and forth between our Cray-2 and Cray X/MP) without changing
the (Fortran) coding. In the next section we give a means for generating sets of
uniform random numbers with these characteristics.

3. RANDOM NUMBER GENERATION METHOD

A majority of random number generators in use today are based on linear,
congruential, pseudo-random sequences of the form

X n + l = (ax, + c) mod m, n 30, u-1

where m is the modulus, a is the multiplier, c is the increment, and X,, is the starting
value or seed [a]. (Often, m = 24 with q E integers on binary machines. On our
Cray computers, the system random number generator RANF has m=248 and
c = 0. The sequence generated has a period of 246-in other words, it samples half
of the entire set of odd numbers available on a machine with a mantissa size of 248.)
Other more complicated schemes generally are based on the linear congruential
generator and involve, for instance, taking the terms generated in a shuMed order,
or involve higher order (e.g., quadratic) difference equations of the same form.

In order to generate independent strings of numbers for multiprocessors, one
normally thinks of dividing the generation process into two parts. The first part
(known as the left method) is the process used to generate the seeds for each
process, and the second part (the right method) generates a string of numbers using
the given seeds [3,4]. In the paper by Frederickson et al. [3], two sets of constants
for the linear difference equation are given. One of these sets is used to produce the
seeds, while the other is used to generate the random numbers for the given
processor. For carefully choosen combinations of constants, a, c, and X0, they
prove that up to a specified length, the sequences generated are disjoint sets.
However, Bowman and Robinson [S] point out that this method essentially takes
a random number generator with m a power of two and divides the entire sequence
of numbers in that generator’s period into d- m/21 disjoint sequences of length 1.

581/81/l-16

232 KONIGES AND LEITH

The problem with such a division of the entire sequence of a generator is that d is
a divisor of the modulus m. As Knuth notes [2], there are subsequence correlations
due to the lack of randomness in the right-hand bits of such a sequence. We
describe the situation by example. Suppose we were to take the entire sequence of
246 numbers in RANF, divide it into four equal parts, and give the starting value
for each part to a processor. Let these seeds be si , s2, sj, and s4. Then, the sequence
starting with s3 differs from the si sequence only by the single leading bit, and the
sequence starting with s2 differs from the si sequence by only the two leading bits.
Our conclusion is that we must either divide such a sequence up judiciously so as
to avoid divisors of m or take a modulus with few divisors. The example of
Frederickson et al. was cleverly concocted, but rather restrictive in its allowable
choices for the constants for Eq. (2). We consider instead a general method for hop-
ping through the sequence at large equal intervals 161. (This method, although
suggested independently, is similar to the leapfrog scheme of Bowman and
Robinson [S]. We explain the leapfrog scheme in Section 4.)

Consider Eq. (2). It is a linear, constant-coefficient difference equation. It is a
simple matter to obtain the kth term in the series explicitly in terms of the
constants. In fact, it is possible to obtain expressions for the kth term in more
complicated number generators using standard methods of difference-equation
analysis. For the linear congruential generator, we have

Xk=(akX,+(ak- l)c/(a- l))modm, (3).

Indeed, as Knuth [2] points out, the subsequence consisting of every kth term of
our original sequence is another linear congruential sequence having the multiplier
uk mod m and the increment b, = ((uk - l)c/(u - 1)) mod m. Using this simple
prescription, we may “hop” through our original sequence designed for a unipro-
cessing machine and generate a seed for each process. Thus, for our application
with r random numbers per process, we choose k = r and obtain a result independ-
ent of the number of processes.

The only remaining problem is how to calculate uk and bk efficiently. Consider
first the case with c = bk = 0. One could multiply a x a x a..., but this would require
the same number of multiplies as running the random number generator. Instead,
we should use one of the standard methods for accelerating the process. These
methods are referred to as the binary method and the factor method, based on
either writing k as a binary number or factoring k [2]. As a simple example,
consider k a power of two. To calculate uk mod m, we form

.*=..u mod m

a4=a2xu2 mod m

a* = u4 x u4 mod m . . .

which requires log, k steps. Thus, we could find the 1024th term in our linear
congruential series with only 11 multiplies (10 to find ak). The major point is to

RANDOMNUMBER GENERATION 233

evaluate each multiply mod m so that the appropriate number of bits is retained.
This is valid, since it can be shown that the multiplication mod m is associative.
Once the multiplier ak for our subsequence is known, we generate the new seeds for
the remaining processors in one multiplication mod m per processor. One word of
caution: often the mod function part of a random number generator is written in
assembly language so that it can be done accurately when m is of the same order
as the number of bits carried by the machine. If one wishes to generate ak using
such an m, the mod function for its generation must be similarly coded.

The generalization for c # 0 is straightforward. To avoid the division in Eq. (3)
write bk in the fOrIn

bk=c(l+a+a2+a3+ ... +ak-‘).

Then evaluate the polynomial expression by a sequence of multiplies and additions
mod m as before. Consider the example above. Form

Pl=l

p2=pla+pl =l+a

p3=p2a2+p2=1+a+a2+a3

p4=p3a4+p3=1+a+ -.. +a’.

If the procedure for computing ak with k any integer requires I(k) multiplications
mod m, then calculating bk requires an additional I(k) multiplications and I(k)
additions (both mod m) [2].

4. APPLICATIONS

For our application, we conducted a study of the best way to group the realiza-
tions into tasks or processes, given the computational environment. One might
believe that within the time-sharing-combined-with-multitasking system [7], it
would be efficient to create many shorter length tasks to improve load-balancing on
the system. However, testing showed that creating a significantly larger number of
tasks than the available number of processors can lead to very large memory
charges. Thus we determined it best to group the realizations into two tasks for the
two-processor machine and four tasks for the four-processor machine. Since the
total number of realizations is known in advance, a starting seed for each task can
be determined (by hopping through the sequence to find the appropriate seed for
the given task size) which will ensure that each multitasking machine receives the
same total set of random numbers as a unitasking machine does.

The scheme for random number generation is particularly well suited to our
problem, since the order in which the random numbers are assigned to a given

234 KONIGES AND LEITH

realization does not vary with the number of processes. Since we are using a com-
bination of uniform random numbers to determine a Gaussian random number,
this guarantees reproducibility of the runs as we switch machines.

Suppose one does not know a priori how many random numbers will be needed
per process. It is relatively simple to pick a suitable upper bound for each process.
Consider the following example for the RANF generator. We wish to divide up the
usual sequence while missing most of the obvious powers of two. We choose a
hopping increment of 3*‘, which falls approximately midway between 230 and 231.
This divides the sequence into roughly 20,000 pieces. Using a power method, we
can compute the multiplier that will generate our subsequence of seeds in 2 x 20
multiplies mod m, i.e.,

a3 = a3’ x a3’ x a 30

a9 = a3’ x a3’ x a3’. . .

Computing forty mod m multiplies is insignificant when compared with the minute
of CPU time it would take to calculate each seed using a (vectorized) random
number generator that calculates 64 random numbers per microsecond. This also
shows that it is unlikely any application would have need of a larger number of
random numbers.

In the first application we discussed, the quality of the random numbers is
obviously equal to that provided by normal use of the RANF function. It was
sufficient for our application. If a higher degree of randomness is desired, we
suggest that the random numbers be mixed by a shuffling procedure such as the one
discussed in Press et al. [S]; however, it may not be possible to guarantee
reproducibility in this case. In the second application (i.e., using 3*‘), the quality is
likely similar, since we have avoided the obvious powers of two.

An alternate way to tackle problems that cannot specify the number of random
numbers needed per process is to use the leapfrog method of Bowman and
Robinson [S]. The primary difference between their scheme and ours lies in
deciding which to use as a left method and which as a right. In the leapfrog scheme,
the seeds (left method) are generated by a standard generator, and the strings (right
method) are given by a hopping multiplier. Thus, each of the k processors possesses
a multiplier that skips over k elements in the sequence to determine the next
random number. (This is the same way that a vectorized random number generator
works-refilling a table in groups of 64, say.) The problem with applying the
leapfrog scheme to our case is that the Gaussians would change as the numbers of
processors changed. We feel that our scheme may be slightly easier to implement,
since the basic number generator never changes, only the seeds. However, the
leapfrog method may contain a lesser number of intersequence correlations, since
it would sample a smaller, contiguous set of the original random number sequence.

RANDOM NUMBERGENERATION 235

5. SUMMARY

We have provided a means for generating reproducible sets of pseudo-random
numbers for use in Monte Carlo codes run on multiple-processor computers. The
method is based on determining the subsequence which hops through the original
sequence in large steps-one step per processor. We have suggested using a fact
method for evaluating powers to determine the constants of the subsequence.

ACKNOWLEDGMENTS

We gratefully acknowledge discussions with Dr. Mark Durst and thank Dr. W. R. Martin for bringing
the leapfrog method to our attention. We also acknowledge useful comments by Drs. K. Fong and
G. Hulbert. This work was supported by the U.S. Dept. of Energy at Lawrence Livermore National
Laboratory under Contract W-7405-ENG-48.

REFERENCES

1. A. E. KONIGES AND C. E. LEITH, Phys. Fluids 30, 3065 (1987).
2. D. E. KNUTH, The Art of Computer Programming, Vol. 2 (Addison-Wesley, Reading, MA, 1981).
3. P. FREDERICKSON, R. HIROMOTO, T. L. JORDAN, B. SMITH, AND T. WARNOCK, Parallel Comput. 1, 175

(1984).
4. W. R. MARTIN, in Proceedings, Sixth IMACS International Symposium on Computer Methods for

Partial Differential Equations, Bethlehem, PA, 1987) edited by R. Vichnevetsky and R. S. Stepleman
(Publ. IMACS, New Brunswick, NJ, 1987), p. 487.

5. K. 0. BOWMAN AND M. T. ROBINSON, in Proceedings Second Conference on Hypercube Multi-
processors, Knoxville 2986, edited by M. T. Heath (SIAM, Philadelphia, 1987), p. 445.

6. A. E. KONIGES AND C. E. LEITH, in Proceedings, 12th Conference on the Numerical Simulation of
Plasmas, San Francisco, 1987, p. pm 24.

7. D. V. ANDERSON, E. J. HOROWITZ, A. E. KONIGES, AND M. G. MCCOY, Comput. Phys. Commun. 43
69, (1986).

8. W. H. PRESS, B. P. FLANNERY, S. A. TELJKOLSKY, AND W. T. VETTERLING, Numerical Recipes
(Cambridge Univ. Press, Cambridge, 1986), p. 194.

RECEIVED: October 5, 1987; REVISED: May 3, 1988
A. E. KONIGES AND C. E. LEITH

Lawrence Livermore National Laboratory
Livermore, California 94550

