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Note 

Parallel Processing of Random Number Generation 
for Monte Carlo Turbulence Simulation 

1. INTRODUCTION 

Certain stochastic processes in plasma physics can be simulated using random 
numbers with a known distribution as initial conditions for the time integration of 
dynamics. These integrations or realizations can usually be grouped into independ- 
ent packets-thus rendering the problem ideally suited for multiprocessing com- 
puters. However, once these packets of realizations (we refer to each packet as a 
process) are sent to the individual processors, we must face a new problem-that 
of generating independent strings of random numbers to be used as initial condi- 
tions for the realizations in each process. We give a simple method for obtaining 
independent strings of random numbers for use in such Monte Carlo calculations. 
The method has the benefit of reproducing the identical string of numbers one 
would obtain on a uniprocessing computer, given that it is known in advance how 
the realizations are to be divided among the processes. The same procedure can be 
applied if this is not known in advance, as long as one can provide an upper bound 
on the number of random numbers required per process. In general, this upper limit 
can be very large. We use 320 as an example, which is of order three billion. 

2. THE PHYSICAL PROBLEM 

In one application, we are interested in solutions to the following nonlinear 
equation which has been used as a model for drift-wave turbulence, 

d --& +v,+iw, 1 
where Qk( t) is a complex-valued function representing the field quantity, (vk + iok) 
is a linear growth, damping, or wave propagation term, and the right-hand side 
gives nonlinear coupling between different Fourier modes. We simulate the random 
flow field governed by Eq. (1) by integrating over an ensemble of Gaussian initial 
conditions. 

For a typical problem, we desire the results of ~4000 realizations. In one study 
[ 11, these integrations were performed on a Cray-2 computer. The realizations 
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were split into four groups (lOOO/processor). As each integration in the ensemble 
finished, the results were tallied in a common block to be used in calculating 
average quantities such as the time-lag correlation function and the response func- 
tion. For this particular problem, we were integrating three distinct complex-valued 
modes, and thus required six Gaussian numbers per realization. The Gaussian 
numbers were generated by summing uniformly distributed numbers, usually 12 per 
Gaussian. Therefore each processor required z 72,000 uniform random numbers. It 
is important that the numbers given to each processor be disjoint sets, since 
otherwise the realizations would be duplicates. Additionally, it would be useful if 
the sets were reproducible from run to run. Finally, it would be nice if the generated 
sets of numbers were the same as those one would obtain using the same random 
number generator on computers with different numbers of processors (e.g., when 
switching back and forth between our Cray-2 and Cray X/MP) without changing 
the (Fortran) coding. In the next section we give a means for generating sets of 
uniform random numbers with these characteristics. 

3. RANDOM NUMBER GENERATION METHOD 

A majority of random number generators in use today are based on linear, 
congruential, pseudo-random sequences of the form 

X n + l = (ax, + c) mod m, n 30, u-1 

where m is the modulus, a is the multiplier, c is the increment, and X,, is the starting 
value or seed [a]. (Often, m = 24 with q E integers on binary machines. On our 
Cray computers, the system random number generator RANF has m=248 and 
c = 0. The sequence generated has a period of 246-in other words, it samples half 
of the entire set of odd numbers available on a machine with a mantissa size of 248.) 
Other more complicated schemes generally are based on the linear congruential 
generator and involve, for instance, taking the terms generated in a shuMed order, 
or involve higher order (e.g., quadratic) difference equations of the same form. 

In order to generate independent strings of numbers for multiprocessors, one 
normally thinks of dividing the generation process into two parts. The first part 
(known as the left method) is the process used to generate the seeds for each 
process, and the second part (the right method) generates a string of numbers using 
the given seeds [3,4]. In the paper by Frederickson et al. [3], two sets of constants 
for the linear difference equation are given. One of these sets is used to produce the 
seeds, while the other is used to generate the random numbers for the given 
processor. For carefully choosen combinations of constants, a, c, and X0, they 
prove that up to a specified length, the sequences generated are disjoint sets. 
However, Bowman and Robinson [S] point out that this method essentially takes 
a random number generator with m a power of two and divides the entire sequence 
of numbers in that generator’s period into d- m/21 disjoint sequences of length 1. 
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The problem with such a division of the entire sequence of a generator is that d is 
a divisor of the modulus m. As Knuth notes [2], there are subsequence correlations 
due to the lack of randomness in the right-hand bits of such a sequence. We 
describe the situation by example. Suppose we were to take the entire sequence of 
246 numbers in RANF, divide it into four equal parts, and give the starting value 
for each part to a processor. Let these seeds be si , s2, sj, and s4. Then, the sequence 
starting with s3 differs from the si sequence only by the single leading bit, and the 
sequence starting with s2 differs from the si sequence by only the two leading bits. 
Our conclusion is that we must either divide such a sequence up judiciously so as 
to avoid divisors of m or take a modulus with few divisors. The example of 
Frederickson et al. was cleverly concocted, but rather restrictive in its allowable 
choices for the constants for Eq. (2). We consider instead a general method for hop- 
ping through the sequence at large equal intervals 161. (This method, although 
suggested independently, is similar to the leapfrog scheme of Bowman and 
Robinson [S]. We explain the leapfrog scheme in Section 4.) 

Consider Eq. (2). It is a linear, constant-coefficient difference equation. It is a 
simple matter to obtain the kth term in the series explicitly in terms of the 
constants. In fact, it is possible to obtain expressions for the kth term in more 
complicated number generators using standard methods of difference-equation 
analysis. For the linear congruential generator, we have 

Xk=(akX,+(ak- l)c/(a- l))modm, (3). 

Indeed, as Knuth [2] points out, the subsequence consisting of every kth term of 
our original sequence is another linear congruential sequence having the multiplier 
uk mod m and the increment b, = ((uk - l)c/(u - 1)) mod m. Using this simple 
prescription, we may “hop” through our original sequence designed for a unipro- 
cessing machine and generate a seed for each process. Thus, for our application 
with r random numbers per process, we choose k = r and obtain a result independ- 
ent of the number of processes. 

The only remaining problem is how to calculate uk and bk efficiently. Consider 
first the case with c = bk = 0. One could multiply a x a x a..., but this would require 
the same number of multiplies as running the random number generator. Instead, 
we should use one of the standard methods for accelerating the process. These 
methods are referred to as the binary method and the factor method, based on 
either writing k as a binary number or factoring k [2]. As a simple example, 
consider k a power of two. To calculate uk mod m, we form 

.*=..u mod m 

a4=a2xu2 mod m 

a* = u4 x u4 mod m . . . 

which requires log, k steps. Thus, we could find the 1024th term in our linear 
congruential series with only 11 multiplies (10 to find ak). The major point is to 
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evaluate each multiply mod m so that the appropriate number of bits is retained. 
This is valid, since it can be shown that the multiplication mod m is associative. 
Once the multiplier ak for our subsequence is known, we generate the new seeds for 
the remaining processors in one multiplication mod m per processor. One word of 
caution: often the mod function part of a random number generator is written in 
assembly language so that it can be done accurately when m is of the same order 
as the number of bits carried by the machine. If one wishes to generate ak using 
such an m, the mod function for its generation must be similarly coded. 

The generalization for c # 0 is straightforward. To avoid the division in Eq. (3) 
write bk in the fOrIn 

bk=c(l+a+a2+a3+ ... +ak-‘). 

Then evaluate the polynomial expression by a sequence of multiplies and additions 
mod m as before. Consider the example above. Form 

Pl=l 

p2=pla+pl =l+a 

p3=p2a2+p2=1+a+a2+a3 

p4=p3a4+p3=1+a+ -.. +a’. 

If the procedure for computing ak with k any integer requires I(k) multiplications 
mod m, then calculating bk requires an additional I(k) multiplications and I(k) 
additions (both mod m) [2]. 

4. APPLICATIONS 

For our application, we conducted a study of the best way to group the realiza- 
tions into tasks or processes, given the computational environment. One might 
believe that within the time-sharing-combined-with-multitasking system [7], it 
would be efficient to create many shorter length tasks to improve load-balancing on 
the system. However, testing showed that creating a significantly larger number of 
tasks than the available number of processors can lead to very large memory 
charges. Thus we determined it best to group the realizations into two tasks for the 
two-processor machine and four tasks for the four-processor machine. Since the 
total number of realizations is known in advance, a starting seed for each task can 
be determined (by hopping through the sequence to find the appropriate seed for 
the given task size) which will ensure that each multitasking machine receives the 
same total set of random numbers as a unitasking machine does. 

The scheme for random number generation is particularly well suited to our 
problem, since the order in which the random numbers are assigned to a given 
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realization does not vary with the number of processes. Since we are using a com- 
bination of uniform random numbers to determine a Gaussian random number, 
this guarantees reproducibility of the runs as we switch machines. 

Suppose one does not know a priori how many random numbers will be needed 
per process. It is relatively simple to pick a suitable upper bound for each process. 
Consider the following example for the RANF generator. We wish to divide up the 
usual sequence while missing most of the obvious powers of two. We choose a 
hopping increment of 3*‘, which falls approximately midway between 230 and 231. 
This divides the sequence into roughly 20,000 pieces. Using a power method, we 
can compute the multiplier that will generate our subsequence of seeds in 2 x 20 
multiplies mod m, i.e., 

a3 = a3’ x a3’ x a 30 

a9 = a3’ x a3’ x a3’. . . 

Computing forty mod m multiplies is insignificant when compared with the minute 
of CPU time it would take to calculate each seed using a (vectorized) random 
number generator that calculates 64 random numbers per microsecond. This also 
shows that it is unlikely any application would have need of a larger number of 
random numbers. 

In the first application we discussed, the quality of the random numbers is 
obviously equal to that provided by normal use of the RANF function. It was 
sufficient for our application. If a higher degree of randomness is desired, we 
suggest that the random numbers be mixed by a shuffling procedure such as the one 
discussed in Press et al. [S]; however, it may not be possible to guarantee 
reproducibility in this case. In the second application (i.e., using 3*‘), the quality is 
likely similar, since we have avoided the obvious powers of two. 

An alternate way to tackle problems that cannot specify the number of random 
numbers needed per process is to use the leapfrog method of Bowman and 
Robinson [S]. The primary difference between their scheme and ours lies in 
deciding which to use as a left method and which as a right. In the leapfrog scheme, 
the seeds (left method) are generated by a standard generator, and the strings (right 
method) are given by a hopping multiplier. Thus, each of the k processors possesses 
a multiplier that skips over k elements in the sequence to determine the next 
random number. (This is the same way that a vectorized random number generator 
works-refilling a table in groups of 64, say.) The problem with applying the 
leapfrog scheme to our case is that the Gaussians would change as the numbers of 
processors changed. We feel that our scheme may be slightly easier to implement, 
since the basic number generator never changes, only the seeds. However, the 
leapfrog method may contain a lesser number of intersequence correlations, since 
it would sample a smaller, contiguous set of the original random number sequence. 
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5. SUMMARY 

We have provided a means for generating reproducible sets of pseudo-random 
numbers for use in Monte Carlo codes run on multiple-processor computers. The 
method is based on determining the subsequence which hops through the original 
sequence in large steps-one step per processor. We have suggested using a fact 
method for evaluating powers to determine the constants of the subsequence. 
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